TECHNICAL DATA

Dual 1-of-4 Decoder/Demultiplexer High-Speed Silicon-Gate CMOS

KK74AC139

The KK74AC139 is identical in pinout to the LS/ALS139, HC/HCT139. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALS outputs.

This device consists of two independent 1-of-4 decoders, each of which decodes a two-bit Address to one-of-four active-low outputs. Active-low Selects are provided to facilitate the demultiplexing and cascading functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output, and utilizing the Select as a data input.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A} ; 0.1 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- High Noise Immunity Characteristic of CMOS Devices
- Outputs Source/Sink 24 mA

PIN ASSIGNMENT

SELECT $_{\text {a }}$	16	V_{CC}
$\mathrm{A}_{\mathrm{a}} \mathrm{C}_{2}$	15	SELECTb
$\mathrm{Al}_{\mathrm{a}} \mathrm{C}^{2}$	14	A_{b}
$\mathrm{YO}_{\mathrm{a}} \mathrm{Cl}^{4}$	13	$A 1_{b}$
$\mathrm{Y} 1_{\mathrm{a}}$ ¢ 5	12	$\mathrm{Y} 0_{\mathrm{b}}$
Y2, 6	11	$\mathrm{Y}_{1}{ }_{\mathrm{b}}$
Y3, 7	10	$\mathrm{Y} 2_{\mathrm{b}}$
GND [8	9	$\mathrm{Y} 3_{b}$

FUNCTION TABLE

Inputs				Outputs			
Select	A1	A0	Y0	Y1	Y2	Y3	
H	X	X	H	H	H	H	
L	L	L	L	H	H	H	
L	L	H	H	L	H	H	
L	H	L	H	H	L	H	
L	H	H	H	H	H	L	

X = don't care

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IN}	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\mathrm{OUT}}$	DC Output Sink/Source Current, per Pin	± 50	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+		
TsOIC	Sackage +	750	mW
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	-65 to +150	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
+Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	V_{CC}	V
T_{J}	Junction Temperature (PDIP)		140	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating Temperature, All Package Types	-40	+85	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High		-24	mA
I_{OL}	Output Current - Low		24	mA
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time ${ }^{*}$ $\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ (except Schmitt Inputs) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 150 \\ 40 \\ 25 \end{gathered}$	ns/V

${ }^{*} V_{\text {IN }}$ from 30% to $70 \% V_{\text {CC }}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ should be constrained to the range $G N D \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\text {CC }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits		Unit
				$25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{V}_{\text {IH }}$	Minimum HighLevel Input Voltage	$\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
V_{OH}	Minimum HighLevel Output Voltage	$\mathrm{I}_{\text {Out }} \leq-50 \mu \mathrm{~A}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V
		$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IV}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum Low- Level Output Voltage	$\mathrm{I}_{\text {OUt }} \leq 50 \mu \mathrm{~A}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IV}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	± 0.1	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OLD }}$	+Minimum Dynamic Output Current	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max	5.5		75	mA
$\mathrm{I}_{\text {OHD }}$	+Minimum Dynamic Output Current	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min	5.5		-75	mA
$\mathrm{I}_{\text {CC }}$	Maximum Quiescent Supply Current (per Package)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	8.0	80	$\mu \mathrm{A}$

* All outputs loaded; thresholds on input associated with output under test.
+Maximum test duration 2.0 ms , one output loaded at a time.
Note: I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V}_{\mathrm{CC}}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}{ }^{*} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits				Unit
			$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay , Input A to Output Y (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 9.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay , Input A to Output Y (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 8.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Select to Output Y (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 10 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Select to Output Y (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11 \\ 8.5 \end{gathered}$	ns
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance	5.0	4.5		4.5		pF

		Typical @25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
C_{PD}	Power Dissipation Capacitance	40	pF

*Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Figure 1. Switching Waveform

Figure 2. Switching Waveform

EXPANDED LOGIC DIAGRAM

N SUFFIX PLASTIC DIP

(MS - 001BB)

16

| $\phi \mid 0.25(0.010)(M)$ | T |
| :--- | :--- | :--- |

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	18.67	19.69
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC

(MS - 012AC)
16

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	9.8	10
\mathbf{B}	3.8	4
\mathbf{C}	1.35	1.75
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	5.72	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.25
\mathbf{M}	0.19	0.25
\mathbf{P}	5.8	6.2
\mathbf{R}	0.25	0.5

